Примеры по теме степень с рациональным показателем. Степень с рациональным показателем. Степень с натуральным показателем, квадрат числа, куб числа

Степень с рациональным показателем

Хасянова Т.Г.,

преподаватель математики

Представленный материал будет полезен преподавателям математики при изучении темы «Степень с рациональным показателем».

Цель представленного материала: раскрытие моего опыта проведения занятия по теме «Степень с рациональным показателем» рабочей программы дисциплины «Математика».

Методика проведения занятия соответствует его типу - урок изучения и первичного закрепления новых знаний. Была проведена актуализация опорных знаний и умений на базе ранее полученного опыта; первичное запоминание, закрепление и применение новых сведений. Закрепление и применение нового материала проходило в виде решения апробированных мною задач различной сложности, дающие положительный результат усвоения темы.

В начале занятия мною были поставлены перед обучающимися следующие цели: образовательная, развивающая, воспитательная. На занятии мною применялись различные способы деятельности: фронтальная, индивидуальная, парная, самостоятельная, тестовая. Задания были дифференцированы и позволяли выявлять, на каждом этапе урока, степень усвоения знаний. Объем и сложность заданий соответствует возрастным особенностям учащихся. Из моего опыта – домашнее задание, аналогичное задачам, решенным в учебном кабинете, позволяет надежно закрепить полученные знания и умения. В конце урока была проведена рефлексия и оценены работы отдельных обучающихся.

Цели были достигнуты. Обучающиеся изучили понятие и свойства степени с рациональным показателем, научились использовать эти свойства при решении практических задач. За самостоятельную работу оценки объявляются на следующем уроке.

Считаю, что применяемая мною методика проведения занятий по математике может быть применена преподавателями математики.

Тема занятия: Степень с рациональным показателем

Цель урока:

Выявление уровня овладения обучающимися комплексом знаний и умений и на его основе применение определенных решений по совершенствованию учебного процесса.

Задачи урока:

Обучающие: формировать новые знания у обучающихся основных понятий, правил, законов на определение степени с рациональным показателем, умения самостоятельно применять знания в стандартных условиях, в измененных и нестандартных условиях;

развивающие: логически мыслить и реализовывать творческие способности;

воспитывающие: формировать интерес к математике, пополнить лексический запас новыми терминами, получить дополнительную информацию об окружающем мире. Воспитывать терпение, усидчивость, способность преодолевать трудности.

    Организационный момент

    Актуализация опорных знаний

    При умножении степеней с одинаковыми основаниями показатели складываются, а основание остается прежним:

Например,

2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остается прежним:


Например,

3. При возведении степени в степень показатели степеней перемножаются, а основание остается прежним:


Например,

4. Степень произведения равна произведению степеней множителей:

Например,

5. Степень частного равна частному степеней делимого н делителя:


Например,

Упражнения с решениями

Найти значение выражения:

Решение:

В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:

(степень произведения равна произведению степеней множителей);


(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остается прежним, при возведении степени в степень показатели степеней перемножаются, а основание остается прежним).

Тогда получим:

В данном примере были использованы первые четыре свойства степени с натуральным показателем.

Арифметический квадратный корень
- это неотрицательное число, квадрат которого равен a ,
. При
- выражение
не определено, т.к. нет такого действительного числа, квадрат которого равен отрицательному числу a .

Математический диктант (8-10 мин.)

    Вариант

II. Вариант

1.Найти значение выражения

а)

б)

1.Найти значение выражения

а)

б)

2.Вычислить

а)

б)

В)

2.Вычислить

а)

б)

в)

Самопроверка (на отворотной доске):

Матрица ответов:

варианта/задания

Задача 1

Задача 2

Вариант 1

а) 2

б) 2

а) 0,5

б)

в)

Вариант 2

а) 1,5

б)

а)

б)

в) 4

II .Формирование новых знаний

Рассмотрим, какой смысл имеет выражение, где - положительное число – дробное число и m-целое,n-натуральное (n›1)

Определение: степенью числа a›0 с рациональным показателем r = , m -целое, n -натуральное (n ›1)называется число .

Итак:

Например:

Замечания:

1. Для любого положительно a и любого рационального r число положительно.

2. При
рациональная степень числа a не определяется.

Такие выражения как
не имеют смысла.

3.Если дробное положительное число то,
.

Если дробное отрицательное число, то - не имеет смысла.

Например: - не имеет смысла.

Рассмотрим свойства степени с рациональным показателем.

Пусть a >0, в>0; r, s - любые рациональные числа. Тогда степень с любым рациональным показателем обладает следующими свойствами:

1.
2.
3.
4.
5.

III . Закрепление. Формирование новых умений и навыков.

Карточки задания работа в малых группах в форме теста.

От целых показателей степени числа a напрашивается переход к рациональным показателем. Ниже мы определим степень с рациональным показателем, причем будем это делать так, чтобы сохранялись все свойства степени с целым показателем. Это необходимо, так как целые числа являются частью рациональных чисел.

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , гдеm – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили корень n-ой степени, то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данныхm , n и a выражение имеет смысл, то степенью числа a с дробным показателемm/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

1. Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

Определение.

Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .



Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

Определение.

Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условиеa≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

2. Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является сократимая обыкновенная дробь, считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

Определение.

Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

o любого действительного числа a , целого положительного m и нечетного натурального n , например, ;

o любого отличного от нуля действительного числа a , целого отрицательного m и нечетного n , к примеру, ;

o любого неотрицательного числа a , целого положительного m и четного n , например, ;

o любого положительного a , целого отрицательного m и четного n , к примеру, ;

o в остальных случаях степень с дробным показателем не определяется, как например не определены степени .a записи мы не придаем никакого смысла, степень числа нуль мы определяем для положительных дробных показателей m/n как , для отрицательных дробных показателей степень числа нуль не определяем.

В заключение этого пункта обратим внимание на то, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, например, . Для вычисления значений выражений подобного вида нужно показатель степени записать в виде обыкновенной дроби, после чего воспользоваться определением степени с дробным показателем. Для указанных примеров имеем и


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Видеоурок «Степень с рациональным показателем» содержит наглядный учебный материал для ведения урока по данной теме. В видеоуроке содержится информация о понятии степени с рациональным показателем, свойства, таких степеней, а также примеры, описывающие применение учебного материала для решения практических задач. Задача данного видеоурока - наглядно и понятно представить учебный материал, облегчить его освоение и запоминание учениками, формировать умение решать задачи с использованием изученных понятий.

Основные преимущества видеоурока - возможность производить наглядно преобразования и вычисления, возможность использования анимационных эффектов для улучшения эффективности обучения. Голосовое сопровождение помогает развивать правильную математическую речь, а также дает возможность заменить объяснение учителя, освобождая его для проведения индивидуальной работы.

Видеоурок начинается с представления темы. Связывая изучения новой темы с ранее изученным материалом, предлагается вспомнить, что n √aиначе обозначается a 1/n для натурального n и положительного a. Данное представление корня n-степени отображается на экране. Далее предлагается рассмотреть, что значит выражение a m/n , в котором a - положительное число, а m/n - некоторая дробь. Дается выделенное в рамке определение степени с рациональным показателем как a m/n = n √a m . При этом отмечено, что n может быть натуральным числом, а m - целым.

После определения степени с рациональным показателем ее смысл раскрывается на примерах: (5/100) 3/7 = 7 √(5/100) 3 . Также демонстрируется пример, в котором степень, представленная десятичной дробью, преобразуется в обычную дробь, чтобы быть представленной в виде корня: (1/7) 1,7 =(1/7) 17/10 = 10 √(1/7) 17 и пример с отрицательным значением степени: 3 -1/8 = 8 √3 -1 .

Отдельно указывается особенность частного случая, когда основание степени - нуль. Отмечено, что данная степень имеет смысл только с положительным дробным показателем. В этом случае ее значение равно нулю: 0 m/n =0.

Отмечена еще одна особенность степени с рациональным показателем - то, что степень с дробным показателем не может рассматриваться с дробным показателем. Приведены примеры некорректной записи степени: (-9) -3/7 , (-3) -1/3 , 0 -1/5 .

Далее в видеоуроке рассматриваются свойства степени с рациональным показателем. Замечено, что свойства степени с целым показателем будут также справедливы и для степени с рациональным показателем. Предлагается вспомнить перечень свойств, которые также справедливы в данном случае:

  1. При умножении степеней с одинаковыми основаниями их показатели складываются: a p a q =a p+q .
  2. Деление степеней с одинаковыми основаниями сводится к степени с данным основанием и разностью показателей степеней: a p:a q =a p-q .
  3. Если возвести степень в некоторую степень, то в итоге получаем степень с данным основанием и произведением показателей: (a p) q =a pq .

Все данные свойства справедливы для степеней с рациональными показателями p, q и положительным основанием a>0. Также верными остаются преобразования степени при раскрытии скобок:

  1. (ab) p =a p b p - возведение в некоторую степень с рациональным показателем произведения двух чисел сводится к произведению чисел, каждое из которых возведено в данную степень.
  2. (a/b) p =a p /b p - возведение в степень с рациональным показателем дроби сводится к дроби, числитель и знаменатель которой возведены в данную степень.

В видеоуроке рассматривается решение примеров, в которых используются рассмотренные свойства степеней с рациональным показателем. В первом примере предлагается найти значение выражения, в котором содержатся переменные х в дробной степени: (х 1/6 -8) 2 -16х 1/6 (х -1/6 -1). Несмотря на сложность выражения, с применением свойств степеней оно решается достаточно просто. Решение задания начинается с упрощения выражения, в котором используется правило возведения степени с рациональным показателем в степень, а также перемножение степеней с одинаковым основанием. После подстановки заданного значения х=8 в упрощенное выражение х 1/3 +48, легко получить значение - 50.

Во втором примере требуется сократить дробь, числитель и знаменатель которой содержать степени с рациональным показателем. Используя свойства степени, выделяем из разности множитель х 1/3 , который затем сокращается в числителе и знаменателе, а используя формулу разности квадратов, на множители раскладывается числитель, что дает еще сокращения одинаковых множителей в числителе и знаменателе. Итогом таких преобразований становится короткая дробь х 1/4 +3.

Видеоурок «Степень с рациональным показателем» может быть использован вместо объяснения учителем новой темы урока. Также данное пособие содержит достаточно полную информацию для самостоятельного изучения учеником. Материал может быть полезен и при дистанционном обучении.

МБОУ «Сидорская

общеобразовательная школа»

Разработка плана-конспекта открытого урока

по алгебре в 11 классе на тему:

Подготовила и провела

учитель по математике

Исхакова Е.Ф.

План-конспект открытого урока по алгебре в 11 классе.

Тема : «Степень с рациональным показателем».

Тип урока : Изучение нового материала

Цели урока :

    Познакомить учащихся с понятием степени с рациональным показателем и её основными свойствами, на основе ранее изученного материала (степень с целым показателем).

    Развивать вычислительные навыки и умения преобразовывать и сравнивать числа с рациональным показателем степени.

    Воспитывать математическую грамотность и математический интерес у учащихся.

Оборудование : Карточки-задания, презентация ученицы по степени с целым показателем, презентация учителя по степени с рациональным показателем, ноутбук, мультимедийный проектор, экран.

Ход урока:

    Организационный момент.

Проверка усвоения пройденной темы по индивидуальным карточкам-заданиям.

Задание №1.

=2;

Б) =х + 5;

Решите систему иррациональных уравнений: - 3 = -10,

4 - 5 =6.

Задание №2.

Решите иррациональное уравнение: = - 3;

Б) = х - 2;

Решите систему иррациональных уравнений: 2 + = 8,

3 - 2 = - 2.

    Сообщение темы и целей урока.

Тема нашего сегодняшнего урока «Степень с рациональным показателем ».

    Объяснение нового материала на примере изученного ранее.

Вам уже знакомо понятие степени с целым показателем. Кто мне поможет их вспомнить?

Повторение с помощью презентации «Степень с целым показателем ».

Для любых чисел a , b и любых целых чисел m и n справедливы равенства:

a m * a n =a m+n ;

a m: a n =a m-n (a ≠ 0);

(a m) n = a mn ;

(a b) n =a n * b n ;

(a/b) n = a n /b n (b ≠ 0) ;

a 1 =a ; a 0 = 1(a ≠ 0)

Сегодня мы обобщим понятие степени числа и придадим смысл выражениям, имеющим дробный показатель степени. Введём определение степени с рациональным показателем (Презентация «Степень с рациональным показателем»):

Степенью числа а > 0 с рациональным показателем r = , где m – целое число, а n – натуральное ( n > 1), называется число m .

Итак, по определению получаем, что = m .

Давайте попробуем применить это определение при выполнении задания.

ПРИМЕР №1

I Представьте в виде корня из числа выражение:

А) Б) В) .

А теперь давайте попробуем применить это определение наоборот

II Представьте выражение в виде степени с рациональным показателем:

А) 2 Б) В) 5 .

Степень числа 0 определена только для положительных показателей.

0 r = 0 для любого r > 0.

Используя данное определение, дома вы выполните №428 и №429.

Покажем теперь, что при сформулированном выше определении степени с рациональным показателем сохраняются основные свойства степеней, верные для любых показателей.

Для любых рациональных чисел r и s и любых положительных a и b справедливы равенства:

1 0 . a r a s =a r+s ;

ПРИМЕР : *

2 0 . a r: a s =a r-s ;

ПРИМЕР: :

3 0 . (a r ) s =a rs ;

ПРИМЕР: ( -2/3

4 0 . ( ab ) r = a r b r ; 5 0 . ( = .

ПРИМЕР: (25 4) 1/2 ; ( ) 1/2

ПРИМЕР на применение сразу нескольких свойств: * : .

    Физкультминутка.

Положили авторучки на парту, спинки выпрямили, а теперь тянемся вперёд, хотим дотронуться до доски. А теперь подняли и наклоняемся вправо, влево, вперёд, назад. Ручки мне показали, а теперь покажите как умеют танцевать ваши пальчики.

    Работа над материалом

Отметим ещё два свойства степеней с рациональными показателями:

6 0 . Пусть r – рациональное число и 0 < a < b . Тогда

a r < b r при r > 0,

a r < b r при r < 0.

7 0 . Для любых рациональных чисел r и s из неравенства r > s следует, что

a r > а r при а > 1,

a r < а r при 0 < а < 1.

ПРИМЕР: Сравните числа:

И ; 2 300 и 3 200 .

    Итоги урока:

Сегодня на уроке мы вспомнили свойства степени с целым показателем, узнали определение и основные свойства степени с рациональным показателем, рассмотрели применение этого теоретического материала на практике при выполнении упражнений. Хочу обратить ваше внимание на то, что тема «Степень с рациональным показателем» является обязательной в заданиях ЕГЭ. При подготовке домашнего задания (№428 и №429